题面
题解
点分治套路走一波,考虑\(calc\)函数怎么写,存一下每条路径在\(\%3\)意义下的路径总数,假设为\(tot[i]\)即\(\equiv i(mod\ 3)\),这时当前的贡献就是\(tot[0]^2+2\times tot[1]\times tot[2]\)。
#include#include #include #include using std::min; using std::max;using std::swap; using std::sort;using std::__gcd;typedef long long ll;template void read(T &x) { int flag = 1; x = 0; char ch = getchar(); while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); } while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;}const int N = 2e4 + 10, Inf = 1e9 + 7;int n, m, k, d[N], Size, ans, tot[4];int cnt, from[N], to[N << 1], nxt[N << 1], dis[N << 1];int p, siz[N], tmp; bool vis[N];inline void addEdge(int u, int v, int w) { to[++cnt] = v, nxt[cnt] = from[u], dis[cnt] = w, from[u] = cnt;}void getrt(int u, int f) { siz[u] = 1; int max_part = 0; for(int i = from[u]; i; i = nxt[i]) { int v = to[i]; if(v == f || vis[v]) continue; getrt(v, u), siz[u] += siz[v]; max_part = max(max_part, siz[v]); } max_part = max(max_part, Size - siz[u]); if(max_part < tmp) tmp = max_part, p = u;}void getpoi(int x, int y, int f) { ++tot[y]; for(int i = from[x]; i; i = nxt[i]) { int v = to[i]; if(v == f || vis[v]) continue; getpoi(v, (y + dis[i]) % 3, x); }}void calc (int x, int y, int dd) { memset(tot, 0, sizeof tot); getpoi(x, y % 3, 0); ans += dd * (tot[0] * tot[0] + 2 * tot[1] * tot[2]);}void doit(int x) { tmp = Inf, getrt(x, 0), vis[p] = true; calc(p, 0, 1); for(int i = from[p]; i; i = nxt[i]) { int v = to[i]; if(vis[v]) continue; calc(v, dis[i], -1); Size = siz[v], doit(v); }}int main () { read(n), Size = n; for(int i = 1, u, v, w; i < n; ++i) { read(u), read(v), read(w); addEdge(u, v, w), addEdge(v, u, w); } doit(1); int m = n * n, gg = __gcd(m, ans); printf("%d/%d\n", ans / gg, m / gg); return 0;}